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Properties of Linear Algebra 
Applicable to Quantum Computing



Outline/Goals for Next Few Lectures

• Course introduction
• Illustrated how D-Wave hardware can be programed for a specific type of 

optimization problem
• One of many different types of problems that may potentially be exploited by 

quantum computing 

• Next few lectures will develop the rigorous mathematical and physics 
foundations that permit such constructions 
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Mathematical and Physics Foundations Required 
to Describe a Quantum Computing System 

• Mathematical foundations applicable to quantum computing
• The quantum mechanics postulates that can be described by this 

mathematics
• Introduce some tools that will allow one to exploit ideas applicable to 

quantum computing
• With these foundations can now begin to discuss 

• Quantum algorithms and their implementation 
• Using quantum gates to build quantum circuits that can run on quantum 

computing simulators and quantum computing hardware
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Theory of Quantum Mechanics Describes 
Behavior Observed in a Non-classical World

• Quantum theory is a mathematical model of the physical world at a scale 
where the size of the observation mechanism is of the same order as the size 
of the object being observed

• The behaviors of the physical world at the quantum level have no analogs in 
people’s everyday (classical) experiences 

• In order to properly design quantum computing devices, algorithms
and programs one should

• Understand the properties and behavior of quantum mechanics and 
• Construct the mathematics that can properly describe it 

5-Sept and 10-Sept-2019 CSC591/592-FALL 2019  Patrick Dreher 4



Building a Rigorous Mathematical Foundation 
for Describing Quantum Computing 

-------
Utilizing the Mathematics of Linear Algebra 

to Represent Quantum Computing Processes *
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* The  choice of the linear algebra will become clear when we discuss the postulates of 
quantum mechanics that describe the behavior of the quantum (non-classical) world 



Review Basic Linear Algebra Concepts

Vector Space 

A vector space is a collection vectors, which may 
be added together and multiplied by scalar quantities 
and still be a part of the collection of vectors
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Review Basic Linear Algebra Concepts

Linear Dependence and Linear Independence

A set of vectors is said to be linearly dependent if one of 
the vectors in the set can be defined as a linear 
combination of the others

A set of vectors is said to be linearly independent if no 
vector in the set can be written according to the 
previous statement
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Review Basic Linear Algebra Concepts

Basis Vectors 

A set of elements (vectors) in a vector space V is called 
a basis, or a set of basis vectors, if the vectors are 
• linearly independent
• every vector in the vector space is a linear combination 

of this set

A basis is a linearly independent spanning set
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Properties and Definitions of a Vector Space

• Given a vector space V containing vectors A, B, C the  
following properties apply

• Commutativity [ A+B=B+A ]

• Associativity of vector addition [ (A+B)+C=A+(B+C)  ]

• Additive identity  [0+A=A+0=A ]  for all A 

• Existence of additive inverse: For any A, there exists a 
(-A) such that  A+(-A)=0
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Properties and Definitions of a Vector Space
• Given a vector space V containing vectors A, B, C the  

following properties apply

• Scalar multiplication identity [ 1A=A ]

• Given scalars r and s
• Associativity of scalar multiplication [ r(sA)=(rs)A ]
• Distributivity of scalar sums [ (r+s)A=rA+sA ]
• Distributivity of vector sums [ r(A+B)=rA+rB ]
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Dirac “bra” and “ket” Notation

Dirac “ket” notation |a> represents a column vector

a Dirac “bra” notation <a|

The transpose aT of a column vector a is a row vector
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|a>=

𝑎𝑎1
𝑎𝑎2
:
𝑎𝑎𝑛𝑛

𝒂𝒂

< 𝑎𝑎| = 𝑎𝑎1∗ 𝑎𝑎2∗ . . . 𝑎𝑎𝑛𝑛∗



Examples of Normalized Vectors in Dirac Notation
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Hilbert Space

• A Hilbert Space is a vector space over the complex numbers with an 
inner product <b|a> 

• The Hilbert Space maps an ordered pair of vectors to the complex 
numbers with the following properties

• Positivity <a|a> > 0   for |a> > 0
• Linearity <c|(α|a> + β|b>) =  α<c|a> + β<c|b> where α and β are complex constants
• Skew symmetry <b|a> = (<a|b>)*

• The adjoint is the complex conjugate transpose of a column vector “a”
and is sometimes called the Hermitian conjugate

• The space is complete as expressed by the norm 
||a|| = (<a|a>)1/2
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𝒂𝒂†



Mathematical Representation of 
Binary States and Superposition

• A binary state (classical bit) defines a state by 
• values of either “0” or “1” (“on” or “off”)

5-Sept and 10-Sept-2019 CSC591/592-FALL 2019  Patrick Dreher 14



Mathematical Representation of 
Bits, Qubits and Superposition

• A classical bit defines a state by values 
of either “0” or “1” (“on” or “off”)

• A quantum bit (qubit) can also have a state of
“0” or “1” but it can also have a possibility of 
being described by additional states
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Mathematical Representation of 
Bits, Qubits and Superposition

• A classical bit defines a state by values 
of either “0” or “1” (“on” or “off”)

• A quantum bit (qubit) can also have a state of
“0” or “1” and it can also have a possibility of 
being described by additional states

• Qubit can form a superposition state 
represented by a vector that is a superposition 
or linear combination of both a “0” or “1”
|a> = α|0> + β|1> 
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|α|2 + |β|2 = 1



Basis Vectors for One Qubit

• In Dirac notation this the vector is represented by  
a = α|0> + β|1>         |α|2 + |β|2 = 1 (modulus)

where α and β are complex coefficients
• α is the probability amplitude of measuring the |0> state and β is the 

probability amplitude of measuring the |1> state
• Common basis is                 and                
• Probability to measure the |0> state is |α|2

• Probability to measure the |1> state is |β|2 
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|𝟎𝟎 >= 𝟏𝟏
𝟎𝟎 |𝟏𝟏 >= 𝟎𝟎

𝟏𝟏



Mathematical Representation 
of Many Different Basis States

• Represent combination of “0”s and “1”s in a way that
many different values can be expressed 

• Define |0> = 1
0 and |1> = 0

1
• Can re-write |a> = α|0> + β|1> as

• This representation is visualized by states Bloch Sphere         
that lie of the surface of a sphere
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Figure from Wikipedia Bloch Sphere
https://en.wikipedia.org/wiki/Bloch_sphere

|α|2 + |β|2 = 1

|𝑎𝑎 >= 𝑒𝑒𝑖𝑖𝑖𝑖(cos(𝜃𝜃
2

)|0 > +𝑒𝑒𝑖𝑖𝑖𝑖sin(𝜃𝜃
2

)|1 >)

https://en.wikipedia.org/wiki/Bloch_sphere


Combinations of Dirac Bra and Ket

• Calculate an inner product

• Reminder that |0> = 1
0 and |1> = 0

1
• Calculate <0|0> (gives an answer of 1 – a single number)
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Matrices as Outer Products
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0 >< 0 = 1
0 1 0 = 1 0

0 0

0 >< 1 = 1
0 0 1 = 0 1

0 0

|1 >< 0| = 0
1 1 0 = 0 0

1 0

|1 >< 1| = 0
1 0 1 = 0 0

0 1
Outer products are a useful mechanism for writing matrices, especially unitaries because 
they capture state transformations

If the bra and ket are placed in the opposite order 



Matrices as Rotations Acting on Qubits

• Matrices describe the rotations that takes a qubit from an initial 
state to a transformed state

• These rotations that operate on a qubit are labelled as “gates”

• Because qubit states can be represented as points on a sphere, 
reversible one-qubit gates can be thought of as rotations of the 
Bloch sphere.  (quantum gates are often called “rotations”)

• Reversible one qubit gates viewed as rotations in this three 
dimensional representation
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Bra and Ket Vectors can be Constructed into Matrices
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𝑋𝑋 = |0 >< 1| + |1 >< 0| = 1
0 0 1 + 0

1 1 0 = 0 1
1 0

𝐼𝐼 = |0 >< 0| + |1 >< 1| = 1
0 1 0 + 0

1 0 1 = 1 0
0 1

𝑌𝑌 = 𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑖𝑖 0 1
1 0

1 0
0 −1 = 𝑖𝑖 0 −1

1 0 = 0 −𝑖𝑖
𝑖𝑖 0

• The matrix representation of the expression    

𝐻𝐻 =
1
2

|0 > +|1 > < 0| + |0 > −|1 > < 1| =
1
2

1 1
1 −1

�
𝒊𝒊

|𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕𝒊𝒊 >< 𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒕𝒕𝒊𝒊|

Z = 0 >< 0 − 1 >< 1 = 1
0 1 0 − 0

1 0 1 = 1 0
0 −1



General Statement - Outer Products

• Any matrix can be written purely in terms of its outer products 
(example)

a b
c d = a|0><0| +b|0><1| + c|1><0| +d|1><1|

• This is a useful formulation to express linear transformations 
• Select an original set of basis states (orthogonal) and express in this 

outer product representation
• Can directly read the effect of the unitary on the basis stated
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Properties of Outer Products

• Given vectors U, V, and W and a scalar c

(U      V) T =  (V      U)
(V+W)      U = V      U + W     U
U     (V + W) = U     V + U      W
c (V     W) = (c V)  W = V      (c W)
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⊗ ⊗
⊗ ⊗ ⊗

⊗ ⊗ ⊗
⊗ ⊗ ⊗

NOTE:  The outer product of tensors also satisfies an additional associativity property 
U     (V W) = (U     V )    W⊗⊗ ⊗ ⊗



Properties of Complex Matrices
If some of the matrix elements are complex there are 
specific definitions to describe these types of matrices

• Hermitian Matrix – A matrix is defined to be a Hermitian matrix 
if it is a complex square matrix that is equal to its own conjugate 
transpose—(the element in the i-th row and j-th column is equal 
to the complex conjugate of the element in the j-th row and i-th
column, for all indices i and j)

• Unitary matrix - a complex square matrix whose adjoint equals 
its inverse
the product of U† and the matrix U is the identity matrix
Note: a complex square matrix U is unitary if its conjugate transpose is 

also its inverse U-1)
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𝑈𝑈†𝑈𝑈 = 𝑈𝑈−1𝑈𝑈 = 𝐼𝐼



State Transformations

• Outer products are a useful mechanism for writing matrices, 
especially unitaries because they capture state transformations

• Pick an orthogonal set of states (ex pair of |0> and |1>) and define a 
set of states {|u00>,|u01> ,|u10>,|u11 }  to which to which the unitary 
rotates the original set of orthogonal states 

U=|u00><00|+|u01><01 +|u10><10| + |u11 ><11|
• This expression is not unique
• This is a general expression that can be constructed for every 

possible set of orthogonal input states
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State Transformations and Concept of a Phase
• There will be at least one set of orthogonal input states that will take 

the form of eigenstates of the matrix

where  𝛼𝛼𝑗𝑗 = ∑𝑗𝑗.exp(i 𝑒𝑒𝑗𝑗)

• The unitary maps each state of the basis |ej>  exp(i 𝑒𝑒𝑗𝑗)|𝑒𝑒𝑗𝑗 >
• The transformed state is also a valid basis 

• Implies that the exponential terms must be complex number of magnitude 1
• The 𝑒𝑒𝑗𝑗 are real numbers

• This formalism also introduces a relative phase when a superposition 
of these states are combined
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A = �
𝑗𝑗

𝛼𝛼𝑗𝑗 |𝑒𝑒𝑗𝑗 >< 𝑒𝑒𝑗𝑗|



Hermitian Matrices and Unitaries

• Hermitian matrices have well defined eigenvalues and eigenstates
• They can be written in the same form as the unitary matrix “A”

• Hermitian matrices have the property that  H=H †

• This requirement forces the eigenvalues and eigenvectors to have 
specific properties
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H = �
𝑗𝑗

ℎ𝑗𝑗 |ℎ𝑗𝑗 >< ℎ𝑗𝑗|



Hermitian Matrices and Unitaries

• Using the property |ℎ𝑗𝑗 >†= < ℎ𝑗𝑗| examine the inner product

(|ℎ𝑗𝑗 >< ℎ𝑗𝑗|) †=(< ℎ𝑗𝑗| †)( |ℎ𝑗𝑗 >†)=|ℎ𝑗𝑗 >< ℎ𝑗𝑗|

• For this to be true the eigenvalues hj of a Hermitian matrix must be 
real
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Relationship between Unitary and Hermitian 

• A unitary matrix (U) has complex exponentials of real numbers for 
eigenvalues

• Hermitian matrix (H) must have real numbers for eigenvalues
• Based on above 2 statements it is possible to define a Hermitian matrix 

from every unitary
• The eigenvalues can be related through exponentiation using the definition 

for exponentiation of a matrix*
U=exp(iH)
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* An entire family of unitaries can be constructed for each Hermitian



Classical Gates versus Quantum Gates

• A classical computer gate is a logical construction of 
operations represented by binary inputs and an associated 
output.

• A quantum gate is a mathematical manipulation of qubits 
that adhere to the postulates of quantum mechanics and the 
mathematics of linear algebra 
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Building Quantum Computing Gates 

• Gates are the building blocks for constructing quantum circuits 

• Quantum mechanics restricts the types of gates that can be 
constructed 

• Quantum circuits are constructed from the combined actions of 
unitary transformations and single bit rotations
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Imposing Quantum Mechanics on Gate Operations 

• A quantum gate must incorporate

• Linear superposition of pure states that includes a phase

• Reversibility - All closed quantum state transformations must be 
reversible

• Reversible transformation are described through matrix rotations
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Quantum Computing Gate Operations 
Under the Constraints of Quantum Mechanics

• A quantum gate must incorporate

• Unitarity - states evolve over time and are expressed mathematically 
by a unitary operator (transformation) for a closed quantum 
mechanics system

• Unitary operator U is expressed as a complex square matrix whose 
adjoint equals its inverse and the product of U adjoint and the 
matrix U is the identity operation 

• Completeness - unitary matrices preserve the length of vectors 
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𝑈𝑈†𝑈𝑈 = 𝑈𝑈−1𝑈𝑈 = 𝐼𝐼



Example of a Reversible One Qubit Gate Operation 
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• Single bit NOT gate output can be reversed by applying another NOT gate 

INPUT OUTPUT

0 1

1 0

INPUT OUTPUT

1 0

0 1



So Far So Good for One Qubit 

but ….

One Qubit Has Only a Limited Number of Operations

What Does Quantum Mechanics Prescribe for 2 Qubits?
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2 Qubit Gates

5-Sept and 10-Sept-2019 CSC591/592-FALL 2019  Patrick Dreher 37



Two Qubit Representation of States

• Two states are represented by a pair of orthonormal 2 vectors  

|a> =       , |b> = 

• The four states are four orthogonal vectors in four dimensions 
formed by the tensor products

|a>   |a>, |a>   |b>, |b>   |a>, |b>   |b>

• These states can also be represented by
|aa>, |ab>, |ba>, |bb>
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1
0

0
1

⊗⊗⊗ ⊗



Consequences for Quantum Computing 

• NAND gate is a
fundamental building block 
for digital computers
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Consequences for Quantum Computing 

• NAND gate is not reversible

• Need to modify a 2 qubit 
input system so that the 
output can display 
bi-directional properties
(physics property of reversibility)
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Design Reversible 2 Qubit Gate
Controlled-NOT Gate
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Matrix representation rules for the CNOT gate

𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

|b>

|a> |a>

|b    a>⊕

|aa>  |aa> |ba>  |bb>
|ab>  |ab> |bb>  |ba>



Identity Matrix  Reversibility
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1 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

†
CNOT CNOTU U I=



Additional Useful Mathematical Operation 
Exclusive Disjunction

• Exclusive disjunction of a    b =(a   b)      (a   b)
• Truth table for this operation is 

5-Sept and 10-Sept-2019 CSC591/592-FALL 2019  Patrick Dreher 43

⊕ ∨ ∧ ¬ ∧

Input
Outputa b

0 0 0

0 1 1

1 0 1

1 1 0



Building a Reversible 2 Qubit Gate
• A two qubit quantum logic gate has a control qubit and a target qubit
• The gate is designed such that if 

• the control bit is set to 0 the target bit is unchanged
• The control bit is set to 1 the target qubit is flipped

• Can be expressed as |a, b>       |a, b     a>
• The CNOT gate is generally used in quantum computing to generate entangled 

states
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⊕

Input Output

|00> |00>

|01> |01>

|10> |11>

|11> |10>



Quantum Mechanics Surprises Imposed on 2 Qubit Gates
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α |00> + β |11>
α |0> + β |1>

|0>

• Consider the CNOT gate below with the given inputs

• The output will be α |00> + β |11>



Can we Duplicate Quantum States For 
Programming Quantum Computers?

• Assume there exists two quantum systems P and Q both in a 
common Hilbert space containing those systems

• Goal: Take a state |α >P in system P and copy it to system Q 
Start with the P state α and combine it with some unknown state Q (call it “β”) 

|α>P |β>Q (assuming no prior information about |β>Q ) in such a way that in the
end a composite state |α>P |α>Q will be constructed
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⊗
⊗



Can we Duplicate Quantum States For 
Programming Quantum Computers? 

• Need to demonstrate that there is no unitary operator that can be 
constructed for all states |α>P and any arbitrary state |β>Q

U(|α>P|β>Q ) = exp (iϒ(α, β) |α>P| α >Q

where ϒ is some real number depending on α and β

• If it is possible to fully copy two states then the combined state 
should obey the time evolution relations connecting unitary and 
Hermitian states U(t) = exp(iH(t))  = exp(iH H) 
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⊗



Proof of the No Cloning Theorem

• Start with arbitrary pair of states from P and Q   (|α>P and |λ>Q )  in 
the Hilbert space  

• Because U is unitary        
<α|λ> < β |β > ≡ < α|P<β|Q| λ >P|β>Q = < α|P<β|Q 𝑈𝑈†𝑈𝑈| λ >P|β>Q

= exp -i(ϒ(α, β)- ϒ(λ, β)) < α|P< α |Q | λ >P| λ >Q  

≡  exp -i(ϒ(α, β)- ϒ(λ,β)) < α| λ >2

5-Sept and 10-Sept-2019 CSC591/592-FALL 2019  Patrick Dreher 48



No Cloning Theorem
• Assuming that the arbitrary state |β> that was picked is normalized 

then  |< α| λ >|2 = |< α| λ >|
• Can now argue that there are only 2 options

1. α = exp (iµ) λ for any µ
2. α is orthogonal to β

• For any arbitrary states the two options above cannot be the only 
possible choices *

• This implies that it is impossible to create an identical copy of an 
arbitrary unknown quantum state
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*Cauchy Schwarz inequality states that for all vectors a and b the following must be true for the inner product space
|<a,b>| ≤ <a,a> ∙ <b,b>



Conclusion - No Cloning Theorem

• There is no unitary operator U on H     H such that for all normalized 
states |α>P and  |β>Q

U(|α>P|β>Q ) = exp (iϒ(α, β) |α>P| α >Q
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⊗



Questions
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