Properties of Linear Algebra Applicable to Quantum Computing

Patrick Dreher
CSC591 / ECE592 - Fall 2019

Outline/G oals for Next Few Lectures

- Course introduction
- Illustrated how D-Wave hardware can be programed for a specific type of optimization problem
- One of many different types of problems that may potentially be exploited by quantum computing
- Next few lectures will develop the rigorous mathematical and physics foundations that permit such constructions

Mathematical and Physics Foundations Required to Describe a Quantum Computing System

- Mathematical foundations applicable to quantum computing
- The quantum mechanics postulates that can be described by this mathematics
- Introduce some tools that will allow one to exploit ideas applicable to quantum computing
- With these foundations can now begin to discuss
- Quantum algorithms and their implementation
- Using quantum gates to build quantum circuits that can run on quantum computing simulators and quantum computing hardware

Theory of Quantum Mechanics Describes Behavior Observed in a Non-classical World

- Quantum theory is a mathematical model of the physical world at a scale where the size of the observation mechanism is of the same order as the size of the object being observed
- The behaviors of the physical world at the quantum level have no analogs in people's everyday (classical) experiences
- In order to properly design quantum computing devices, algorithms and programs one should
- Understand the properties and behavior of quantum mechanics and
- Construct the mathematics that can properly describe it

Building a Rigorous Mathematical Foundation for Describing Quantum Computing

Utilizing the Mathematics of Linear Algebra to Represent Quantum Computing Processes *

[^0]
Review Basic Linear Algebra Concepts

Vector Space

A vector space is a collection vectors, which may be added together and multiplied by scalar quantities and still be a part of the collection of vectors

Review Basic Linear Algebra Concepts

Linear Dependence and Linear Independence

A set of vectors is said to be linearly dependent if one of the vectors in the set can be defined as a linear combination of the others

A set of vectors is said to be linearly independent if no vector in the set can be written according to the previous statement

Review Basic Linear Algebra Concepts

Basis Vectors

A set of elements (vectors) in a vector space V is called a basis, or a set of basis vectors, if the vectors are

- linearly independent
- every vector in the vector space is a linear combination of this set

A basis is a linearly independent spanning set

Properties and Definitions of a Vector Space

- Given a vector space V containing vectors $\mathrm{A}, \mathrm{B}, \mathrm{C}$ the following properties apply
- Commutativity [$\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$]
- Associativity of vector addition [$(A+B)+C=A+(B+C)]$
- Additive identity $[0+A=A+0=A]$ for all A
- Existence of additive inverse: For any A, there exists a $(-A)$ such that $A+(-A)=0$

Properties and Definitions of a Vector Space

- Given a vector space V containing vectors $\mathrm{A}, \mathrm{B}, \mathrm{C}$ the following properties apply
- Scalar multiplication identity [1A=A]
- Given scalars r and s
- Associativity of scalar multiplication [r(sA)=(rs)A]
- Distributivity of scalar sums [$(r+s) A=r A+s A]$
- Distributivity of vector sums $[r(A+B)=r A+r B]$

Dirac "bra" and "ket" Notation

Dirac "ket" notation |a> represents a column vector $\overrightarrow{\boldsymbol{a}}$

$$
\left\lvert\, \mathrm{a}>=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)\right.
$$

a Dirac "bra" notation <a

$$
<a \left\lvert\,=\left(\begin{array}{llll}
a_{1}^{*} & a_{2}^{*} & \ldots & a_{n}^{*}
\end{array}\right)\right.
$$

The transpose \mathbf{a}^{\top} of a column vector a is a row vector

Examples of Normalized Vectors in Dirac Notation

$$
\begin{aligned}
& \left\lvert\, a>=\frac{1}{\sqrt{2}}[|0>+| 1>]=\frac{1}{\sqrt{2}}\left[\left(\frac{1}{0}\right)+\left(\frac{0}{1}\right)\right]=\left(\frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}\right)\right. \\
& \left\lvert\, b>=\left[\frac{3}{5}\left|0>-\frac{4}{5}\right| 1>\right]=\frac{3}{5}\left(\frac{1}{0}\right)-\frac{4}{5}\left(\frac{0}{1}\right)=\left(\frac{\frac{3}{5}}{\frac{-4}{5}}\right)\right. \\
& \left|c>=\frac{3 i}{5}\right| 0>-\frac{4 i}{5} \left\lvert\, 1>=\frac{3 i}{5}\left(\frac{1}{0}\right)-\frac{4 i}{5}\left(\frac{0}{1}\right)=\left(\frac{\frac{3 i}{5}}{\frac{4 i}{5}}\right)\right.
\end{aligned}
$$

Hilbert S pace

- A Hilbert Space is a vector space over the complex numbers with an inner product <b|a>
- The Hilbert Space maps an ordered pair of vectors to the complex numbers with the following properties
- Positivity <a|a>>0 for $\mid a \gg 0$
- Linearity $\langle c|(\alpha|a\rangle+\beta|b\rangle)=\alpha<c|a\rangle+\beta<c|b\rangle$ where α and β are complex constants
- Skew symmetry <b|a> = (<a|b>)*
- The adjoint \boldsymbol{a}^{\dagger} is the complex conjugate transpose of a column vector "a" and is sometimes called the Hermitian conjugate
- The space is complete as expressed by the norm

$$
||a||=(<a|a\rangle)^{1 / 2}
$$

Mathematical Representation of Binary States and Superposition

- A binary state (classical bit) defines a state by
- values of either " 0 " or " 1 " ("on" or "off")

Mathematical Representation of Bits, Qubits and Superposition

- A classical bit defines a state by values of either " 0 " or " 1 " ("on" or "off")
- A quantum bit (qubit) can also have a state of " 0 " or " 1 " but it can also have a possibility of being described by additional states

Mathematical Representation of Bits, Qubits and Superposition

- A classical bit defines a state by values of either " 0 " or " 1 " ("on" or "off")
- A quantum bit (qubit) can also have a state of " 0 " or " 1 " and it can also have a possibility of being described by additional states
- Qubit can form a superposition state represented by a vector that is a superposition or linear combination of both a " 0 " or " 1 "

$$
|a\rangle=\alpha|0\rangle+\left.\beta|1>\quad| \alpha\right|^{2}+|\beta|^{2}=1
$$

Basis Vectors for One Qubit

- In Dirac notation this the vector is represented by

$$
a=\alpha|0>+\beta| 1>\quad|\alpha|^{2}+|\beta|^{2}=1 \text { (modulus) }
$$

where α and β are complex coefficients

- α is the probability amplitude of measuring the $\mid 0>$ state and β is the probability amplitude of measuring the |1> state
- Common basis is $|0\rangle=\binom{\mathbf{1}}{0}$ and $|1\rangle=\binom{0}{1}$
- Probability to measure the $\mid 0>$ state is $|\alpha|^{2}$
- Probability to measure the $\mid 1>$ state is $\mid \beta^{\mid 2}$

Mathematical Representation of Many Different Basis States

- Represent combination of " 0 "s and " 1 "s in a way that many different values can be expressed
- Define $|0\rangle=\binom{1}{0}$ and $|1\rangle=\binom{0}{1}$
- Can re-write $|a>=\alpha| 0>+\beta \mid 1>$ as $|\alpha|^{2}+|\beta|^{2}=1$

$$
\left\lvert\, a>=e^{i \gamma}\left(\cos \left(\frac{\theta}{2}\right)\left|0>+e^{i \phi} \sin \left(\frac{\theta}{2}\right)\right| 1>\right)\right.
$$

- This representation is visualized by states that lie of the surface of a sphere

Bloch Sphere

Figure from Wikipedia Bloch Sphere https://en.wikipedia.org/wiki/Bloch sphere

Combinations of Dirac Bra and Ket

- Calculate an inner product
- Reminder that $|0\rangle=\binom{1}{0}$ and $|1\rangle=\binom{0}{1}$
- Calculate $<0 \mid 0>$ (gives an answer of 1 - a single number)

Matrices as Outer Products

If the bra and ket are placed in the opposite order

$$
\begin{aligned}
& |0><0|=\binom{1}{0}\left(\begin{array}{ll}
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
& |0><1|=\binom{1}{0}\left(\begin{array}{ll}
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \\
& |1><0|=\binom{0}{1}\left(\begin{array}{ll}
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \\
& |1><1|=\binom{0}{1}\left(\begin{array}{ll}
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Outer products are a useful mechanism for writing matrices, especially unitaries because they capture state transformations

Matrices as Rotations Acting on Qubits

- Matrices describe the rotations that takes a qubit from an initial state to a transformed state
- These rotations that operate on a qubit are labelled as "gates"
- Because qubit states can be represented as points on a sphere, reversible one-qubit gates can be thought of as rotations of the Bloch sphere. (quantum gates are often called "rotations")
- Reversible one qubit gates viewed as rotations in this three dimensional representation

Bra and Ket Vectors can be Constructed into Matrices

- The matrix representation of the expression $\sum_{i} \mid$ input $_{i}><$ output $_{i} \mid$

$$
\begin{aligned}
I & =|0><0|+|1><1|=\binom{1}{0}\left(\begin{array}{ll}
1 & 0
\end{array}\right)+\binom{0}{1}\left(\begin{array}{ll}
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
X & =|0><1|+|1><0|=\binom{1}{0}\left(\begin{array}{ll}
0 & 1
\end{array}\right)+\binom{0}{1}\left(\begin{array}{ll}
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
Z & =|0><0|-|1><1|=\binom{1}{0}\left(\begin{array}{ll}
1 & 0
\end{array}\right)-\binom{0}{1}\left(\begin{array}{ll}
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
Y & =i X Z=i\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=i\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
H & =\frac{1}{\sqrt{2}}[(|0>+| 1>)<0|+(|0>-| 1>)<1|]=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
\end{aligned}
$$

General Statement - Outer Products

- Any matrix can be written purely in terms of its outer products (example)

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a|0><0|+b|0><1|+c|1><0|+d|1><1|
$$

- This is a useful formulation to express linear transformations
- Select an original set of basis states (orthogonal) and express in this outer product representation
- Can directly read the effect of the unitary on the basis stated

Properties of Outer Products

- Given vectors \mathbf{U}, \mathbf{V}, and \mathbf{W} and a scalar \mathbf{c}
$(\mathbf{U} \otimes \mathbf{V})^{\top}=(\mathbf{V} \otimes \mathbf{U})$
$(\mathbf{V}+\mathbf{W}) \otimes \mathbf{U}=\mathbf{V} \otimes \mathbf{U}+\mathbf{W} \otimes \mathbf{U}$
$\mathbf{U} \otimes \mathbf{(V +} \mathbf{W})=\mathbf{U} \otimes \mathbf{V}+\mathbf{U} \otimes \mathbf{W}$
$c(\mathbf{V} \otimes \mathbf{W})=(c \mathbf{V}) \otimes \mathbf{W}=\mathbf{V} \otimes(c \mathbf{W})$
NOTE: The outer product of tensors also satisfies an additional associativity property $\mathbf{U} \otimes \mathbf{V} \otimes \mathbf{W})=(\mathbf{U} \otimes \mathbf{V}) \otimes \mathbf{W}$

Properties of Complex Matrices

If some of the matrix elements are complex there are specific definitions to describe these types of matrices

- Hermitian Matrix - A matrix is defined to be a Hermitian matrix if it is a complex square matrix that is equal to its own conjugate transpose-(the element in the i-th row and j-th column is equal to the complex conjugate of the element in the j-th row and i-th column, for all indices i and j)
- Unitary matrix - a complex square matrix whose adjoint equals its inverse
$>$ the product of U^{\dagger} and the matrix U is the identity matrix
$>$ Note: a complex square matrix U is unitary if its conjugate transpose is also its inverse U^{-1})

$$
U^{\dagger} U=U^{-1} U=I
$$

State Transformations

- Outer products are a useful mechanism for writing matrices, especially unitaries because they capture state transformations
- Pick an orthogonal set of states (ex pair of $|0\rangle$ and $|1\rangle$) and define a set of states $\left.\left\{\left|u_{00}>,\right| u_{01}\right\rangle,\left|u_{10}>,\right| u_{11}\right\}$ to which to which the unitary rotates the original set of orthogonal states

$$
U=\left|u_{00}><00\right|+\left|u_{01}><01+\left|u_{10}><10\right|+\left|u_{11}><11\right|\right.
$$

- This expression is not unique
- This is a general expression that can be constructed for every possible set of orthogonal input states

State Transformations and Concept of a Phase

- There will be at least one set of orthogonal input states that will take the form of eigenstates of the matrix
where $\alpha_{j}=\sum_{j} \cdot \exp \left(\mathrm{i} e_{j}\right)$

$$
\mathrm{A}=\sum_{j} \alpha_{j}\left|e_{j}><e_{j}\right|
$$

- The unitary maps each state of the basis $\left|\mathrm{e}_{\mathrm{j}}\right\rangle \rightarrow \exp \left(\mathrm{i} e_{j}\right)\left|e_{j}\right\rangle$
- The transformed state is also a valid basis
- Implies that the exponential terms must be complex number of magnitude 1
- The e_{j} are real numbers
- This formalism also introduces a relative phase when a superposition of these states are combined

Hermitian Matrices and Unitaries

- Hermitian matrices have well defined eigenvalues and eigenstates
- They can be written in the same form as the unitary matrix " A "

$$
\mathrm{H}=\sum_{j} h_{j}\left|h_{j}><h_{j}\right|
$$

- Hermitian matrices have the property that $\mathrm{H}=\mathrm{H}^{+}$
- This requirement forces the eigenvalues and eigenvectors to have specific properties

Hermitian Matrices and Unitaries

- Using the property $\left|h_{j}>^{\dagger}=<h_{j}\right|$ examine the inner product

$$
\left(\left|h_{j}><h_{j}\right|\right)^{\dagger}=\left(<\left.h_{j}\right|^{\dagger}\right)\left(\mid h_{j}>^{\dagger}\right)=\left|h_{j}><h_{j}\right|
$$

- For this to be true the eigenvalues h_{j} of a Hermitian matrix must be real

Relationship between Unitary and Hermitian

- A unitary matrix (U) has complex exponentials of real numbers for eigenvalues
- Hermitian matrix (H) must have real numbers for eigenvalues
- Based on above 2 statements it is possible to define a Hermitian matrix from every unitary
- The eigenvalues can be related through exponentiation using the definition for exponentiation of a matrix*

$$
\mathrm{U}=\exp (\mathrm{iH})
$$

* An entire family of unitaries can be constructed for each Hermitian

Classical G ates versus $Q u a n t u m ~ G a t e s ~$

- A classical computer gate is a logical construction of operations represented by binary inputs and an associated output.
- A quantum gate is a mathematical manipulation of qubits that adhere to the postulates of quantum mechanics and the mathematics of linear algebra

Building Quantum Computing Gates

- Gates are the building blocks for constructing quantum circuits
- Quantum mechanics restricts the types of gates that can be constructed
- Quantum circuits are constructed from the combined actions of unitary transformations and single bit rotations

Imposing Quantum Mechanics on Gate Operations

- A quantum gate must incorporate
- Linear superposition of pure states that includes a phase
- Reversibility - All closed quantum state transformations must be reversible
- Reversible transformation are described through matrix rotations

Quantum Computing Gate Operations Under the Constraints of Quantum Mechanics

- A quantum gate must incorporate
- Unitarity - states evolve over time and are expressed mathematically by a unitary operator (transformation) for a closed quantum mechanics system
- Unitary operator U is expressed as a complex square matrix whose adjoint equals its inverse and the product of U adjoint and the matrix U is the identity operation

$$
U^{\dagger} U=U^{-1} U=I
$$

- Completeness - unitary matrices preserve the length of vectors

Example of a Reversible One Qubit Gate Operation

INPUT	OUTPUT
0	1
1	0

INPUT	OUTPUT
1	0
0	1

- Single bit NOT gate output can be reversed by applying another NOT gate

So Far So Good for One Qubit

 butOne Qubit Has Only a Limited Number of Operations
What Does Quantum Mechanics Prescribe for 2 Qubits?

2 Qubit Gates

－

chatiouniversir

号

Two Qubit Representation of States

- Two states are represented by a pair of orthonormal 2 vectors

$$
|a\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right],|b\rangle=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

- The four states are four orthogonal vectors in four dimensions formed by the tensor products

$$
|a>\otimes| a>,|a>\otimes| b\rangle,|b>\otimes| a>,|b>\otimes| b\rangle
$$

- These states can also be represented by
|aa>, |ab>, |ba>, |bb>

Consequences for Quantum Computing

NAND gate

- NAND gate is a
fundamental building block
for digital computers

A	B	Output
O	O	1
O	1	1
1	O	1
1	1	O

Consequences for Quantum Computing

- NAND gate is not reversible
- Need to modify a 2 qubit input system so that the output can display bi-directional properties (physics property of reversibility)

Design Reversible 2 Qubit Gate Controlled-NOT Gate

Matrix representation rules for the CNOT gate

$$
\left.\left.\left|a>=\left[\begin{array}{ll}
1 \\
0
\end{array}\right],\right| b\right\rangle=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad l l|l| a \gg|a b>\rightarrow| b b\right\rangle
$$

$$
U_{C N O T}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Identity Matrix \rightarrow Reversibility

$$
\begin{gathered}
1=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \\
U_{\text {CNOT }}^{\dagger} U_{\text {CNOT }}=I
\end{gathered}
$$

Additional Useful Mathematical Operation Exclusive Disjunction

- Exclusive disjunction of $a \oplus b=(a \vee b) \wedge \neg(a \wedge b)$
- Truth table for this operation is

Input		Output
a	b	
0	0	0
0	1	1
1	0	1
1	1	0

Building a Reversible 2 Qubit Gate

- A two qubit quantum logic gate has a control qubit and a target qubit
- The gate is designed such that if
- the control bit is set to 0 the target bit is unchanged
- The control bit is set to 1 the target qubit is flipped

Input	Output
$\|00\rangle$	$\|00\rangle$
$\|01\rangle$	$\|01\rangle$
$\|10\rangle$	$\|11\rangle$
$\|11\rangle$	$\|10\rangle$

- Can be expressed as $|a, b\rangle \longrightarrow|a, b \oplus a\rangle$
- The CNOT gate is generally used in quantum computing to generate entangled states

Quantum Mechanics Surprises Imposed on 2 Qubit Gates

- Consider the CNOT gate below with the given inputs

- The output will be $\alpha \mid 00>+\beta$ |11>

Can we Duplicate Quantum States For Programming Quantum Computers?

- Assume there exists two quantum systems P and Q both in a common Hilbert space containing those systems
- Goal: Take a state $\mid \alpha>_{p}$ in system P and copy it to system Q

Start with the P state α and combine it with some unknown state Q (call it " β ")
$|\alpha\rangle_{P} \otimes|\beta\rangle_{Q}$ (assuming no prior information about $|\beta\rangle_{Q}$) in such a way that in the end a composite state $\left.\left|\alpha>_{p} \otimes\right| \alpha\right\rangle_{Q}$ will be constructed

Can we Duplicate Quantum States For Programming Quantum Computers?

- Need to demonstrate that there is no unitary operator that can be constructed for all states $\mid \alpha>_{p}$ and any arbitrary state $|\beta\rangle_{Q}$

$$
U\left(\left|\alpha>_{P}\right| \beta>_{Q}\right)=\exp \left(i r(\alpha, \beta)\left|\alpha>_{P}\right| \alpha>_{Q}\right.
$$

where γ is some real number depending on α and β

- If it is possible to fully copy two states then the combined state should obey the time evolution relations connecting unitary and Hermitian states $\mathrm{U}(\mathrm{t})=\exp (\mathrm{iH}(\mathrm{t})) \rightarrow=\exp (\mathrm{iH} \otimes \mathrm{H})$

Proof of the No Cloning Theorem

- Start with arbitrary pair of states from P and $Q\left(\mid \alpha>_{p}\right.$ and $\left.\mid \lambda>_{Q}\right)$ in the Hilbert space
- Because U is unitary

$$
\begin{gathered}
\langle\alpha| \lambda><\beta|\beta>\equiv<\alpha|_{P}<\left.\beta\right|_{Q}\left|\lambda>_{P}\right| \beta>_{Q}=<\left.\alpha\right|_{P}<\left.\beta\right|_{Q} U^{\dagger} U\left|\lambda>_{P}\right| \beta>_{Q} \\
=\exp -i(\gamma(\alpha, \beta)-\gamma(\lambda, \beta))<\left.\alpha\right|_{P}<\left.\alpha\right|_{Q}\left|\lambda>_{P}\right| \lambda>_{Q} \\
\equiv \exp -i(\gamma(\alpha, \beta)-\gamma(\lambda, \beta))<\alpha \mid \lambda>^{2}
\end{gathered}
$$

No Cloning Theorem

- Assuming that the arbitrary state $\mid \beta>$ that was picked is normalized then $|\langle\alpha \mid \lambda\rangle|^{2}=|\langle\alpha \mid \lambda\rangle|$
- Can now argue that there are only 2 options

1. $\alpha=\exp (i \mu) \lambda$ for any μ
2. α is orthogonal to β

- For any arbitrary states the two options above cannot be the only possible choices *
- This implies that it is impossible to create an identical copy of an arbitrary unknown quantum state

[^1]
Conclusion - No Cloning Theorem

- There is no unitary operator U on $\mathrm{H} \otimes \mathrm{H}$ such that for all normalized states $|\alpha\rangle_{p}$ and $|\beta\rangle_{Q}$

$$
U\left(\left|\alpha>_{P}\right| \beta>_{Q}\right)=\exp \left(i \curlyvee(\alpha, \beta)\left|\alpha>_{P}\right| \alpha>_{Q}\right.
$$

都
－
？

正

[^0]: * The choice of the linear algebra will become clear when we discuss the postulates of quantum mechanics that describe the behavior of the quantum (non-classical) world

[^1]: *Cauchy Schwarz inequality states that for all vectors \mathbf{a} and \mathbf{b} the following must be true for the inner product space $|<a, b>| \leq<a, a>\cdot\langle b, b>$

